Some properties of finite groups with wreathed Sylow 2-subgroup

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A REDUCTION THEOREM FOR UNil OF FINITE GROUPS WITH NORMAL ABELIAN SYLOW 2-SUBGROUP

Let F be a finite group with a Sylow 2-subgroup S that is normal and abelian. Using hyperelementary induction and cartesian squares, we prove that Cappell’s unitary nilpotent groups UNil∗(Z[F ];Z[F ],Z[F ]) have an induced isomorphism to the quotient of UNil∗(Z[S];Z[S],Z[S]) by the action of the group F/S. In particular, any finite group F of odd order has the same UNil-groups as the trivial gr...

متن کامل

Reduction of UNil for finite groups with normal abelian Sylow 2-subgroup

Let F be a finite group with a Sylow 2-subgroup S that is normal and abelian. Using hyperelementary induction and cartesian squares, we prove that Cappell’s unitary nilpotent groups UNil∗(Z[F ];Z[F ],Z[F ]) have an induced isomorphism to the quotient of UNil∗(Z[S];Z[S],Z[S]) by the action of the group F/S. In particular, any finite group F of odd order has the same UNil-groups as the trivial gr...

متن کامل

POS-groups with some cyclic Sylow subgroups

A finite group G is said to be a POS-group if for each x in G the cardinality of the set {y in G | o(y) = o(x)} is a divisor of the order of G. In this paper we study the structure of POS-groups with some cyclic Sylow subgroups.

متن کامل

FINITE GROUPS WITH A SYSTEM OF NILPOTENT SUBGROUPS CONTAINING THE SYLOW SUBGROUP By

Let G be a finite group and p an odd prime. By M < G we denote that M is a proper subgroup of G. Put the set Ψ p (G) = {M:M < G, |G : M| 6= a prime power and |G : M|p = 1}. In this paper we investigate the structure of G if every member of Ψ p (G) is nilpotent.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1971

ISSN: 0021-8693

DOI: 10.1016/0021-8693(71)90108-6